2.8a stability in first-order systems

Monday, February 8, 2021 12:36 PM

Recall: $x_{t+1} = f(x_t)$ is stable at an equilibrium \overline{x} if $|f'(\overline{x})| < 1$ unstable at an equilibrium \overline{x} if $|f'(\overline{x})| > 1$.

What is the equivalent for first-order systems?

Thm: Let X(t+1) = F(X(t)) be a system of n first-order equations, $X(t) = (x_i(t), ..., x_n(t))^T$, $F = (f_1, ..., f_n)^T$, and $f_i = f_i(x_1, ..., x_n)$. Let \widehat{X} be an equilibrium of the system. Then linearization of the system about \widehat{X} and letting $U(t) = X(t) - \widehat{X}$ gives a system U(t+1)= TU(t),

where I is the Jacobian matrix of F at X $\mathcal{J}(\vec{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & \frac{\partial f_1}{\partial x_2}(\vec{x}) & \cdots & \frac{\partial f_n}{\partial x_n}(\vec{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(\vec{x}) & \cdots & \cdots & \frac{\partial f_n}{\partial x_n}(\vec{x}) \end{pmatrix}$

X is locally asymptotically stable if | \lailel \telegraphical eigenvalues | i. and unstable if some /2i/>1.

proof sketch: For X(0) s.t. $|X-X(0)| < \varepsilon$, with ε sufficiently small, can approximate X(t+1) = F(X(t)) by the Taylor Series of F $\chi(t+1) \approx F(\chi) + J(\chi)(\chi(t)-\chi) + \frac{1}{2}(\chi(t)-\chi) + \frac{1}{2}(\chi(t)-\chi) + \dots$ Jacobian

(Lessian

 $\Rightarrow X(t+1)-X \approx T(X)(X(t)-X)$ for X(t) sufficiently close to \widehat{X} . U(t+1) ≈ J(x)U(t) $=) \quad \mathsf{M}(\mathsf{f}) = \left[\mathsf{I}(\mathsf{X}) \right]^{\mathsf{f}} \mathsf{M}(\mathsf{o}).$ If all eigenvalues $|\lambda_{\zeta}| < 1$, then $\rho(J(X)) < 1$. If $\varrho(J(X)) < I$, then $\lim_{t \to \infty} [J(X)]^t \to 0$, so $\lim_{t \to \infty} \chi(t) = X$. If $|\lambda_i| > 1$ for some i, then so long as $[X(\delta) - \widehat{X}] \cdot V_i \neq 0$, where Vi is the eigenvector associated with /Li/), then time /U(t) (= 00. Of course, the Inearization may break down as |X(t)-X| grows, let X(b) will still leave a sufficiently small ball ground X, so |Y(t)-X| is unslable. The 210 let JER2×2 Then /2:1<1 & eigenvalues 1: Fff [Tr(J) [< | + det (J) < 2. And | \lambda_i | \gamma\ for some eigenvalue \lambda_i if at least one of the following is true: Tr (J)> | + let(J) , Tr (J) < -1 - det(J) , det (J) > 1. Than 2.11 (Jury conditions, Schur-Cohn criterion, n=3) Suppose p(X) = 25 + a, x2 + a2 x + a3, a, a2, a3 ER is a polynomial Then the solutions d, , dz, dz of p(x)=0 satisfy /2[Iff (1) p(1)= 1+a, +az +az >0 (2) $(-1)^3 p(-1) = 1 - a_1 + a_2 - a_3 > 0$, (Necessary + suff resent) Conditions for n > 3 $(3) | -(a_3)^2 > | a_2 - a_3 a_1 |$

The 212 If the solutions $\lambda_1, \dots, \lambda_n$ of $p(\lambda) = 0$, where $p(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n \quad \text{satisfy} \quad |\lambda_i| < 1, \text{ then}$ $(1) \quad p(1) = |+a_1 + a_2 + \dots + a_n| > 0$ $(2) \quad (-1)^n p(-1) = |-a_1 + a_2 - \dots + (-1)^n a_n| > 0$ $(3) \quad |a_n| < 1.$ (Necessary but not sufficient)

Def. 2.9 Let X be an equilibrium of X(t+1) = f(X(t))and let J(X) be the Jacobian matrix at X, \overline{X} is hyperbolic if $|A_{i}| \neq 1$ \forall eigenvalue A_{i} of J(X). Otherwise, A_{i} and hyperbolic.